新闻资讯 了解首宏动态、掌握行业资讯
随着人工智能 (AI) 在医疗保健各个领域的大肆侵入,对于AI的关注已经是迫在眉睫。本文盘点了目前应用于医疗保健领域的各个AI工具,希望能够帮助医疗领域的从业者完成更好的诊断、更复杂的病人护理和更准确的疾病预判。
过去几年,人工智能及其在医疗保健领域的应用潜力已经被广泛讨论。讨论不仅局限于智能算法本身,而且还扩展到围绕人工智能的诸多新闻炒作。
每当一项关于深度学习或机器学习在诊断学、医学成像或其他任何医学领域的新研究发表时,新闻阅读者大多会肯定地说,标题一定是诸如“人工智能在某某领域再次击败了医生”之类的噱头。相关炒作是如此扭曲和极端,以至于对于人工智能的评价往往是两极化。
人工智能可以分为三个阶段:人工狭义智能(ANI),人工通用智能(AGI)和超级智能。我们目前的科学(特指大型语言模型和各种机器学习方法),充其量能够在一些领域达到人工狭义智能(ANI),即人类创造的第一级智能,少量可以达到第二级智能,即当机器能够从有限的经验中抽象出概念并在各领域之间转移知识的人工通用智能(AGI)阶段。
其一,算法所使用的医学数据往往来源于高度发达的地区,也就是说,包含着一定特异性或概念化的算法框架本身就是不客观的,其内部不可避免地夹杂着工作团队的主观假设;
其二,智能算法的预测能力是以过去的案例为基础的。然而事实上,这些案例经验在新的药物副作用或治疗抗性实验预测中很可能是无用的;
其三,大多数正在进行的人工智能研究都是在从各种医疗机构收集的训练数据集上完成的。然而,如果利用算法分析医学图像,医生往往会得到相同的数据集,却很难再现临床实际情况;
人工智能的局限性往往与其理论价值无关,却会大大影响其实际执行效果。现实中,生活和生命并不只是简简单单的训练数据集。
因此,在训练数据集的基础上进行的人工智能研究的结果,很可能无法代表现实生活中的病症情况,这是我们必须要明晰的。
免责声明:带有本公司标识的图片未经授权转载,将追究法律责任;文章部分文字、图片,视频来源于网络,如有侵权,请联系删除,版权归原作者所有。
威尼斯wns9778股份有限公司 地址:山东省青岛市南区南京路8号府都大厦 16、20-22 层 联系电话:400-699-8388
Copyright @ 2018 Safehigh ALL Right Reserved.
ICP备案:鲁ICP备19047490号-1